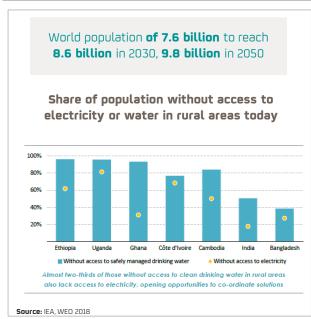
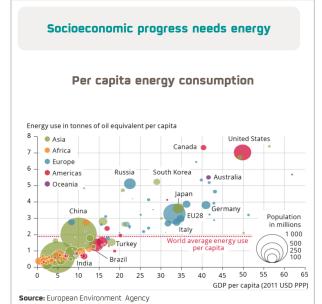
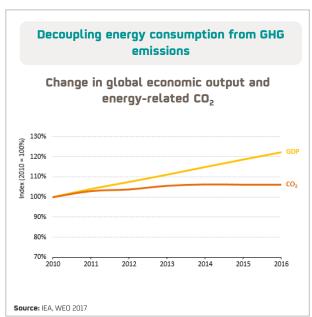
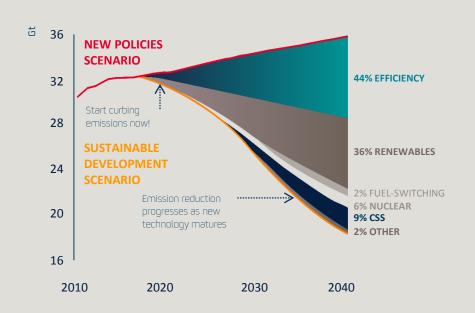
From oil&gas to a decarbonized energy portfolio: technology & economy

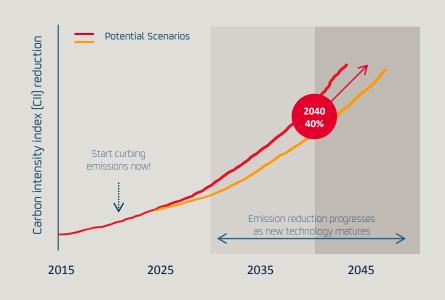
Financiación sostenible para los objetivos climáticos Club Español de la Energía, 25 February 2020




Climate Change and Energy Transition


The challenge... (the Kaya identity)

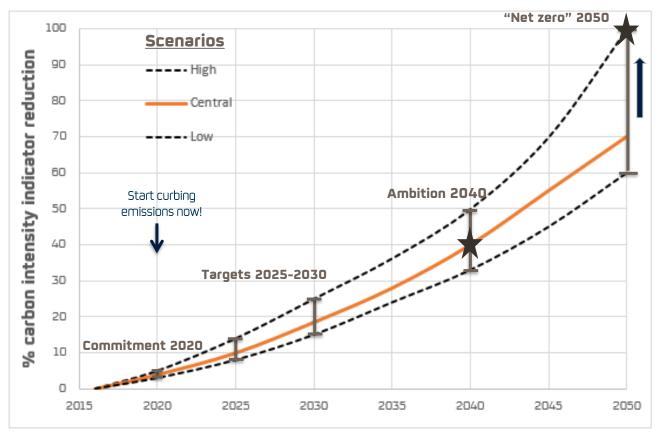



Carbon intensity reduction pathway

Paris-aligned Repsol's approach 2018

IEA Sustainable Development Pathway

Repsol Decarbonization Pathway 2018



Ambitious long term-target in line with IEA SDS (40% 2040) with short-term commitment (3% 2020)

Carbon Intensity Indicator

One further step: Repsol decarbonization pathway 2019

Key technologies

Renewables and energy storage

POWER SUPPLY

TRANSMISSION & DISTRIBUTION

ACTIVE DEMAND

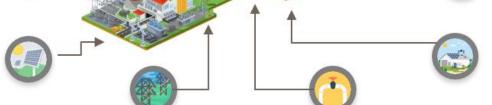
The rise of wind and solar generation enables a **renewable powered energy sector**, ensuring social, economical and ecological sustainability.

The active system management of TSO-DSO-consumer bidirectional power flows enables a reliable and efficient energy supply, underpinned by other energy carriers.

Penetration of DERs increase complexity in the demandside, requiring **customer centric products** focused on client experience.

Distributed generation

Deployment of renewable DERs for electricity/heat supply.


Stationary energy storage

Provide full dispatching capabilities and enable the active management of DERs.

Low C generation

High renewable penetration capacity driven by the reduction of manufacturing costs of solar PV and wind power technologies.

Smart grids network

Dynamic grid management with a two-way digital communication.

Advanced mobility

Self-driving capabilities disrupt vehicle ownership model and turn intermodal mobility into a service.

Progressive electrification of road, air and marine transport (direct/indirect).

Demand response

Dynamic optimization of the energy consumption integrating automated market driven responses.

Smart home / building

Fully connected home enables complete monitoring and automation of lighting, safety/security, energy and HVAC systems.

Gas & H₂ distribution network

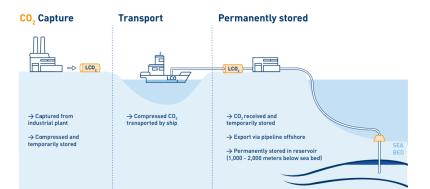
Increasing levels of renewable gases in gas grid reduces its carbon intensity and enables bulk energy storage, H₂ grids enable sector coupling and industry decarbonization.

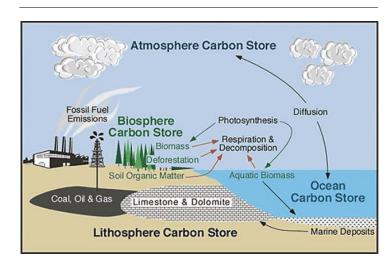
Key technologies

CCUS, NET's and Nature-based Solutions

CCUS (Carbon Capture, Use and Storage) and NET (Negative Emission Technologies)

In the power sector, CCUS can decarbonize power generation from hydrocarbons, particularly from natural gas.


CCUS technologies offer a solution for emission reduction from hard-toabate industrial processes, as cement, steel and petrochemicals.


In O&G operations, CO₂ separated from natural gas production can be reinjected in the field, instead of being vented to the atmosphere.

CCUS is a key element to deploy **negative emissions technologies** (NET), such as bioenergy with CCUS, direct air capture with CO₂ storage or e-fuels (CO2 + green/blue hydrogen).

Nature-based Solutions

 Additionally, ecosystems (forests, soils, water) are natural sinks of CO2 that positive man action can reinforce.

Key technologies

Low carbon refineries and fuels

CURRENT

FUTURE

Climate Change and Energy Transition

Sustainable economy and financing

Principles for effective economic policies to address global challenges as climate change:

- Measures are introduced as soon as possible (act now!)
- Universal participation (global governance)
- Marginal cost of reducing emissions equal for all (global price of carbon, technology neutral)
- Increasing stringency over time (time for technology maturation)

(Summary from 2018 Economy Nobel Prize W. Nordhaus, "Climate change: the ultimate challenge for economics", plus own interpretation

- Financial community response to Climate Action driven by:
 - Assessment of climate-driven risks to companies
 - ESG responsibility and social pressure
- Transparent and harmonized disclosing of risks, targets, metrics (TCFD)
- Public and private approaches to qualify companies/sectors/activities for sustainable financing (benchmarks, metrics)

Sustainable finance: What principles to apply?

Inclusive and fit-for-purpose

Any initiative or project that make a **real contribution** to reducing GHG emissions, both short-term (start acting now!) and long-term (ambitious vision)

Technology neutral

All potentially promising technologies

Technology evolution and breakthroughs are **uncertain and not linear**

Protect competitiveness

Climate Change is a **global** issue, the EU to lead, not to decouple from global governance

Safeguard international competitiveness of **EU industries**