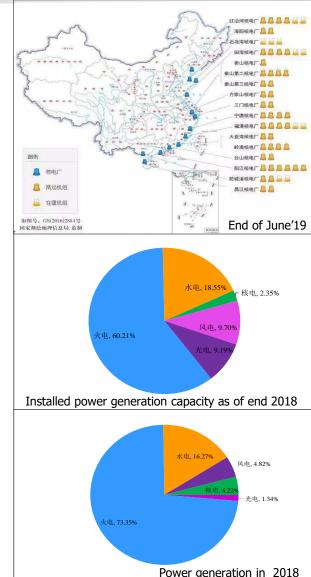
High Temperature Gas Cooled Reactor Development in China

Prof. Dr.-Ing. SUN Yuliang (sunyl@tsinghua.edu.cn)

Institute of Nuclear and New Energy Technology (INET) Tsinghua University, Beijing, China



Madrid, Spain, 2019-10-17

Mainland China Nuclear Power Plants

By the end of 2018

- 44 NPP units under commercial operation
- Installed nuclear capacity: 44.645 GW (2.35% of total)
- Annual power generation: 294.4 TWh (4.22% of total)
- Until recent in 2019
 - 3 NPP units put into operation
 - 11 NPP units under construction
 - 4 NPP units approved for construction
 - Role and prospect of nuclear power
 - Meeting demand, structure optimization, energy security, technology and industry advancement
 - Prospect 2035: 160-170GW, 13-14% of total generated power

Development of Advanced Nuclear Power Technologies

Large PWR technologies

- > CAP1400
- Hualong-1: China Advanced Gen-III NPP Technology

Modular HTR technology

- HTR-10 test reactor constructed around 2000
- HTR-PM demonstration plant under construction

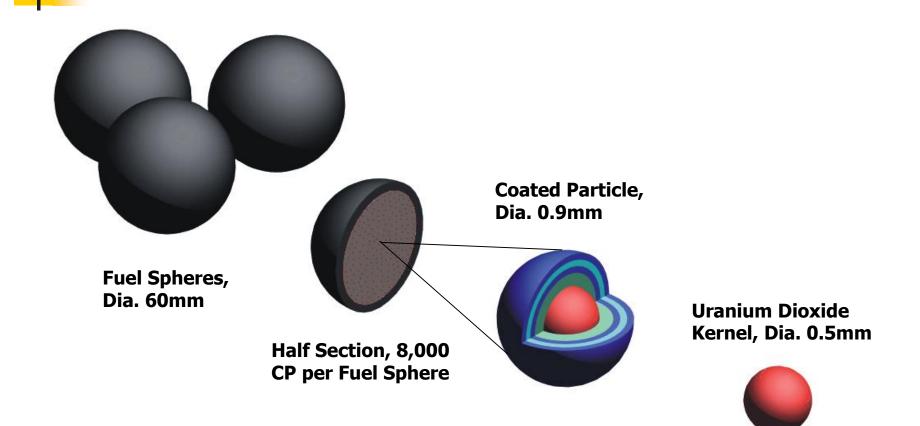
Sodium cooled fast reactor

- CEFR (65MW) achieved initial criticality on 2011-07-21
- Industrial scale fast reactor plant under development

Other advanced reactors

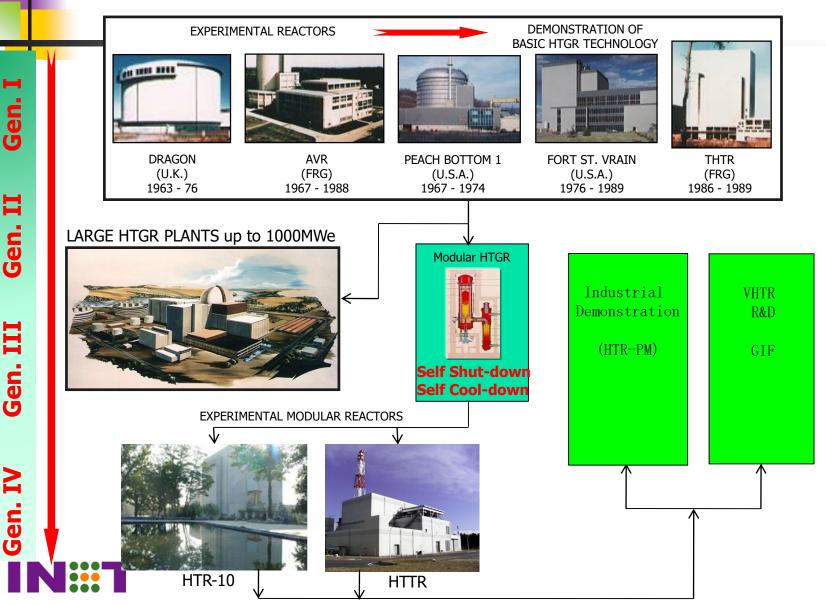
- Small (modular) light water reactors
- Generation IV advanced types: Molten Salt Reactor (MSR), Lead-cooled Fast Reactor (LFR),

HTGR Technology

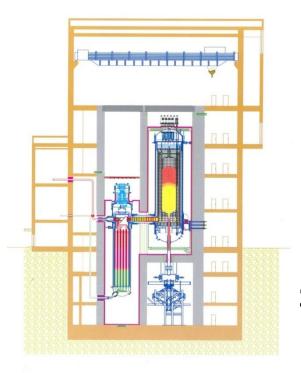

HTGR: <u>High</u> <u>Temperature</u> <u>Gas-cooled</u> <u>Reactor</u>, a thermal nuclear reactor

	HTGR	LWR
Fuel	UO ₂ + Ceramic Coatings and Matrix	UO ₂ + Metallic Cladding
Coolant	Helium	Light Water
Moderator	Graphite	Light Water
Core Structural Materials	Graphite	Metal

- UO₂ +Helium + Graphite: allows for much higher temperatures, which again allows for higher power generating efficiency and wider applications
- Graphite as moderator: less compact reactors, large thermal inertia and slow transients


Pebble-bed HTGR Fuel

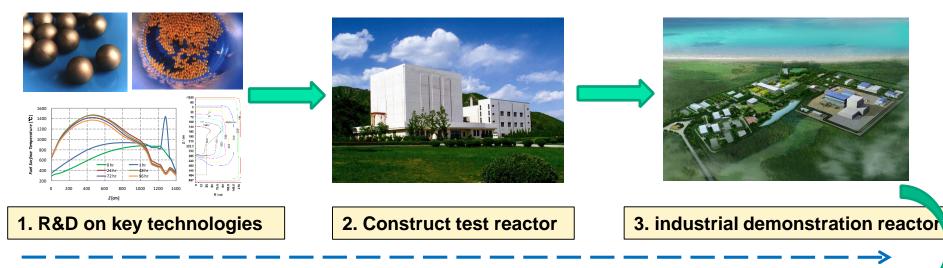
Coated Particle Fuel Elements



Worldwide HTGR Development

Modular HTGR advanced features

Typical configuration of modular HTGR designs


1. How **<u>nuclear safety</u>** is achieved with modular HTGR designs:

- Reactor self-shutdown: (1) strong negative temperature feedback; (2) large span of allowable temperature increase of fuel
- Self-acting decay heat removal: (1) low power density;
 (2) selected slim configuration of reactor core
- Containing radioactivity: (1) strong coatings; (2) limiting temperature simply by material selection and core configuration
- Safety goal: no off-site nuclear emergency (safety feature of Gen-IV systems)
- 2. <u>High temperature</u> output: 700-950 degree C for steam turbine power generation, process heat applications, even gas-turbine power generation

Chinese HTGR development: Roadmap

Three major steps till now, one step yet to follow

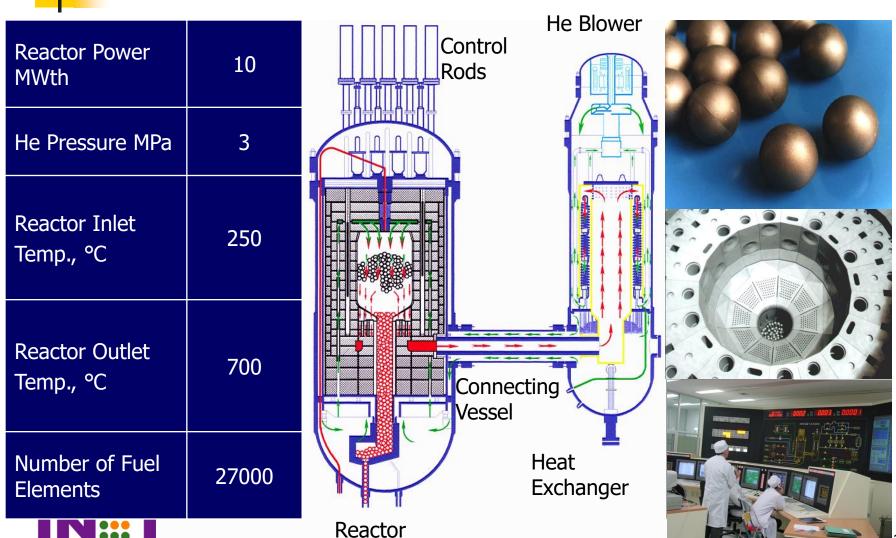
Electricity generation, cogeneration, process heat

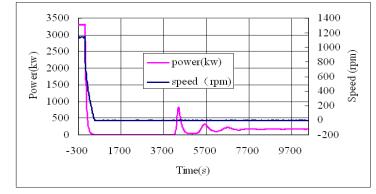
8

Building a Modular HTGR Test Reactor

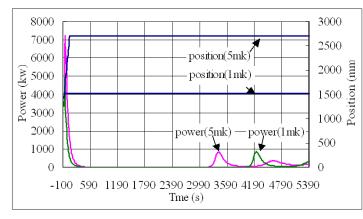
□ HTR-10: 10 MWt High Temperature Gas-cooled test Reactor

- > 1986: HTGR became one of the key projects in the "National High Technology Program"
- > 1992: government approved to construct HTR-10
- > 1995: started to construct HTR-10 in INET, Tsinghua University, Beijing
- > 2000: HTR-10 reached first criticality
- > 2003: HTR-10 operated in full power




HTR-10 in 1997

HTR-10 in 2000

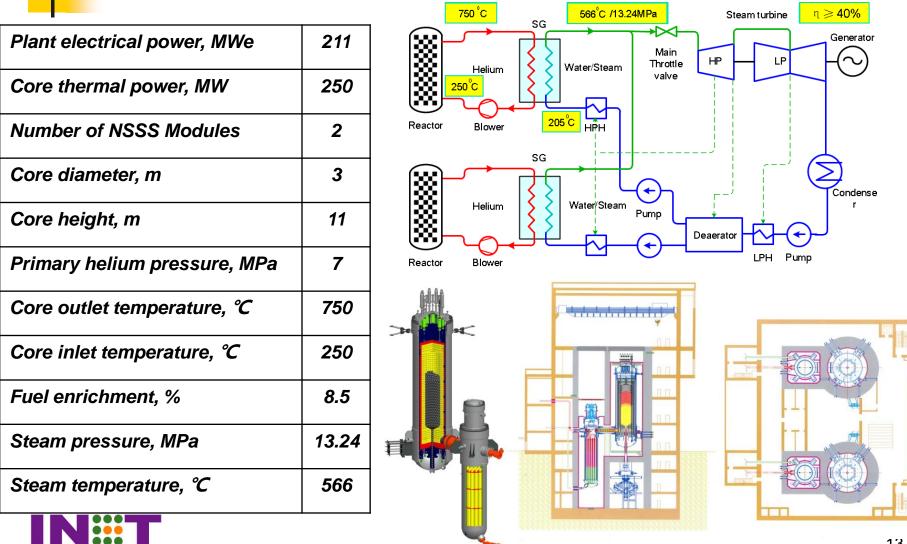

The HTR-10 Test Reactor

Safety Test with HTR-10

ATWS, Loss of Coolant Flow

International experts witnessing HTR-10 safety tests

ATWS, Control Rod Withdrawal



HTR-PM

- It is logic and strategic to build an industrial demonstration plant as the follow-up development step after the success of the HTR-10 test reactor.
- A 200MWe modular pebble bed HTGR demonstration project (HTR-PM) has been initiated and under implementation.
- Since 2006, the project has become one of the national key projects within the 2020 National Science & Technologies Development Program of China.
- HTR-PM has been under construction since 2012.

HTR-PM Process Design

Design Verification

The Engineering Lab.

- Verification of key system and components before installed in the reactors
- 10 MW helium test loop
 - Steam generator, one of the 19 assemblies
- Full scale, under reactor helium condition
 - Control Rods Driving Mechanism
 - Small Sphere Absorption System
 - Control Room
 - Helium Circulator
 - Spent fuel canister
 - Fuel Handling System
 - Steam Generator

Design Verification

Fuel pebbles

Steam Generator

Main Helium Circulator

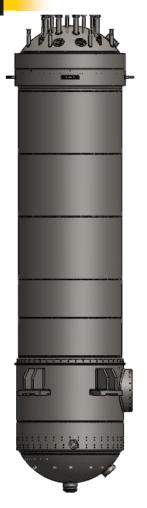
Fuel Handling System

CRDM

Small absorber ball system

Spent fuel storage system

Main control room



Equipment Manufacturing

- First of a kind
- Almost all components are manufactured in China, except for graphite and some valves

Key components / systems	Manufacturer
Fuel	China North Nuclear Fuel Co., LTD
RPV	Shanghai Electric
Steam Generator	Harbin Electric
Graphite internal	Toyo Tanso
Carbon internal	China FANGDA Group
Metallic internal	Shanghai Electric
CR drives	Shanghai Electric
Main helium circulator	Harbin Electric & Shanghai Electric
DCS & Simulator	China General Nuclear PowerCorporation16

RPV manufacturing

heat treatment of the top head

machined top head

top flange forgings

Shanghai Electric Co. 460 tons of large forgings

fine machined top flange

preliminary machined large forgings

2015.11.21 Finish hydrostatic test

Construction Progress

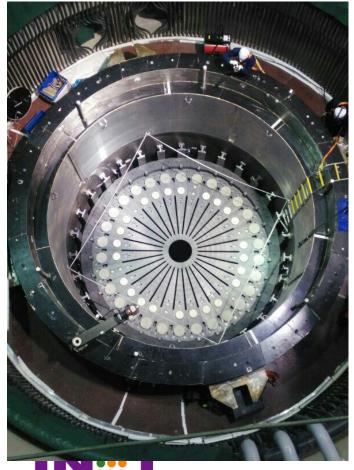
2012.12.09, First Concrete

Construction Progress

2015, Civil work of nuclear island finished

2016.3, Manufacture of fuel elements started

2016, RPVs on site and installed

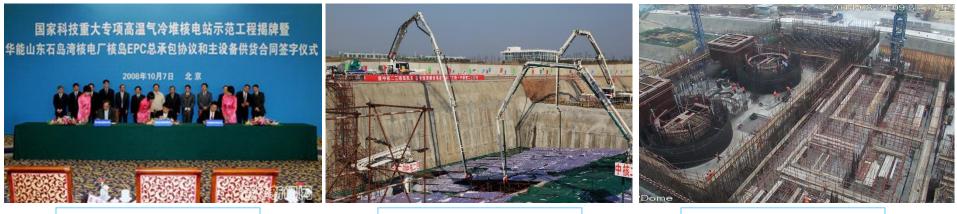

2015~2016

Metallic internal structure, water cooling panel, DCS, full scope simulator

Construction Progress

2017.6, graphite pebbles, ceramic internals finished

2017.12, RPV upper head


2018.10, 1st SG manufactured, now under installation

Construction Milestones

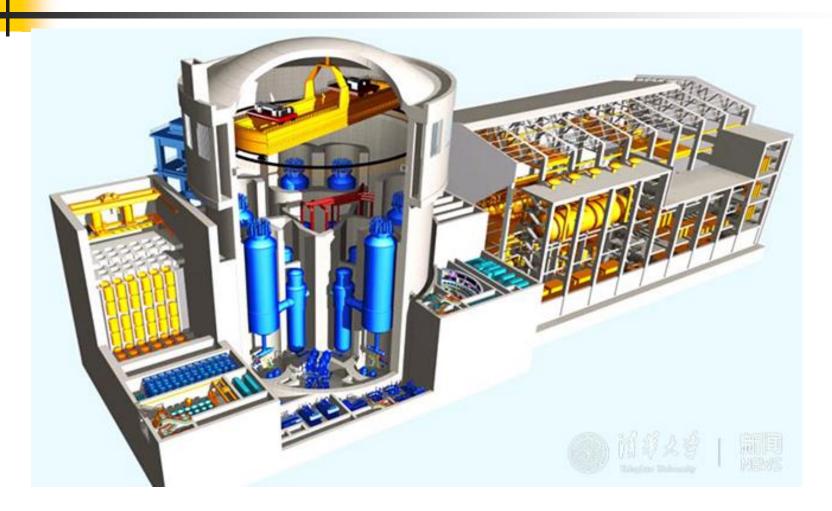
- **2012/12/09: FCD**
- 2015/06/30: Reactor building
- 2015/12: Full scope simulator
- 2016/03/20: 1st RPV installed
- 2016/08: Start fuel production
- 2016/09: 2nd RPV installed
- 2016/12: main control room

- 2017/03: steam turbine installed
- 2017/06: 1st ceramic internals installed
- 2017/12: 1st head of RPV installed
- 2018/06: 2nd ceramic internals installed
- 2018/10: 1st SG delivered
- Now: installation and commissioning tests

HTR-PM in 2008

HTR-PM in 2012

HTR-PM in 2014


Next Step

Role of HTR-PM in China

- Supplement to PWRs, especially to replace coal-fired power plant to reduce coal share
- Co-generation of steam and electricity, Hydrogen production
- Technology Innovation

HTR-PM 600

Conclusion Remarks

- HTGR is an important component of advanced nuclear power technology development in China.
 Modular HTGR is suitable for high efficiency power generation and various heat applications.
- Modular HTGR can play supplemental roles to large LWR for power generation.
- Several reasons for intensive R&D efforts of advanced nuclear power technologies: advanced technical features, new application and market opportunities, high expectations of nuclear potential, innovation-driven strategy

THANKS FOR YOUR ATTENTION !

